Tra falsi miti e realtà Danno osseo e HIV: ciò che veramente conosciamo

Outline

- What do I know?
- What do we know?
- What have we learned lately?

DXA Results Summary:

Region	Area (cm²)	BMC (g)	BMD (g/cm²)	T - score	Z - score
Ł2	15.23	15.63	1.026	0.0	0.6
1.3	16.33	16.96	1.038	-0.4	0.3
L4	18.31	17.16	0.938	-1.1	-0.4
Total	49.87	49.75	0.997	-0.7	-0.1

Total BMD CV 1.0%

WHO Classification: Normal Fracture Risk: Not Increased

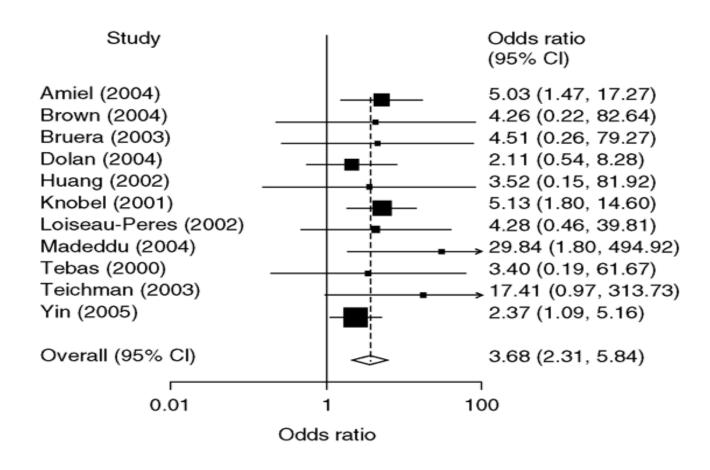
DXA Results Summary:

Region	Area (cm²)	BMC (g)	BMD (g/cm²)	T - score	Z - score
Neck	5.20	4.26	0.818	-0.3	0.4
Neck Total	33.95	30.59	0.901	-0.3	0.1

Total BMD CV 1.0%

WHO Classification: Normal Fracture Risk: Not Increased

8° WORKSHOP NAZIONALE CISAL



Outline

- What do we know?
- What have we learned lately?

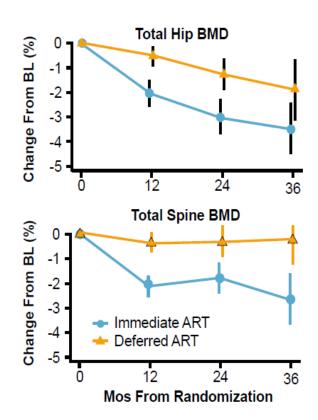
Both osteopenia and osteporosis are very common in HIV population

HIV by itself is associated with osteopenia and osteoporosis

	N=269 *
Age, median (IQR)	38 (31,44)
Male (%)	85%
White non-Hispanic Race (%)	47%
HIV RNA log ₁₀ c/mL, median (IQR)	4.62 (4.24,4.90)
HIV RNA ≥ 100,000 c/mL (%)	41%
CD4 cells/mm³, median (IQR)	233 (106,334)
CD4 < 200 cells/mm³ (%)	43%
Lumbar spine T score ≤-1 (%)	35%
BMI, Median (IQR)	24.9 (21.8, 28.2)
Limb fat kg, Median (IQR)	7.4 (4.7,10.1)

Baseline prevalence of osteopenia/osteoporosis 35%

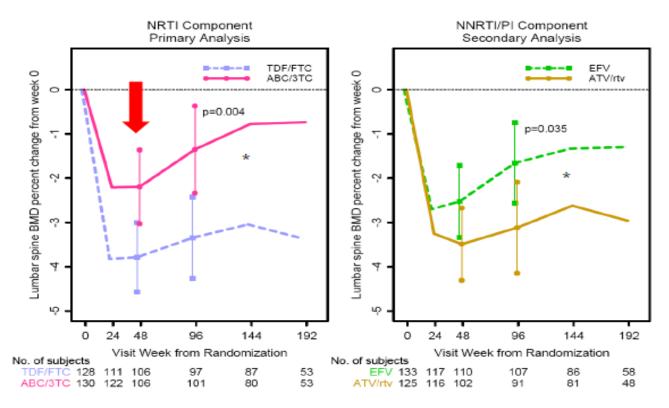
When we start ARV therapy patients lose bone


Independently of the regimen

START Substudy

- Substudy included 193 pts in early ART arm and 204 pts in deferred ART arm with f/u
- Greater BMD loss in hip and spine with immediate vs deferred ART
 - Estimated mean difference for hip:
 -1.5% (95% CI: -2.3% to
 -0.8%; P < .001)
 - Estimated mean difference for spine: -1.6% (95% CI: -2.2% to -1.0%; P < .001)

- Osteoporosis incidence similar between arms (P = .27)
- PI treatment in first regimen associated with spine BMD decrease

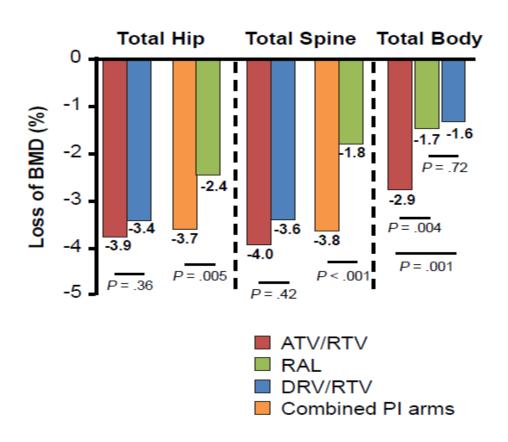


WORKSHOP NAZIONALE CISAL

When we start ARV therapy patients lose bone

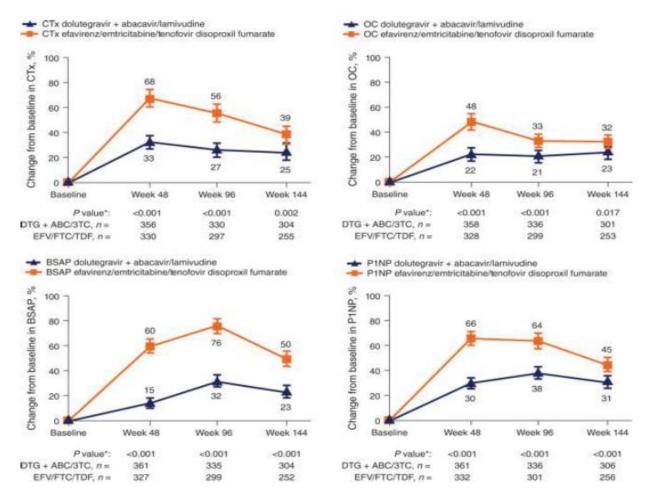
Some drugs more than others

* -linear regression
No significant interaction of NRTI and NNRTI/PI components (p=0.63)

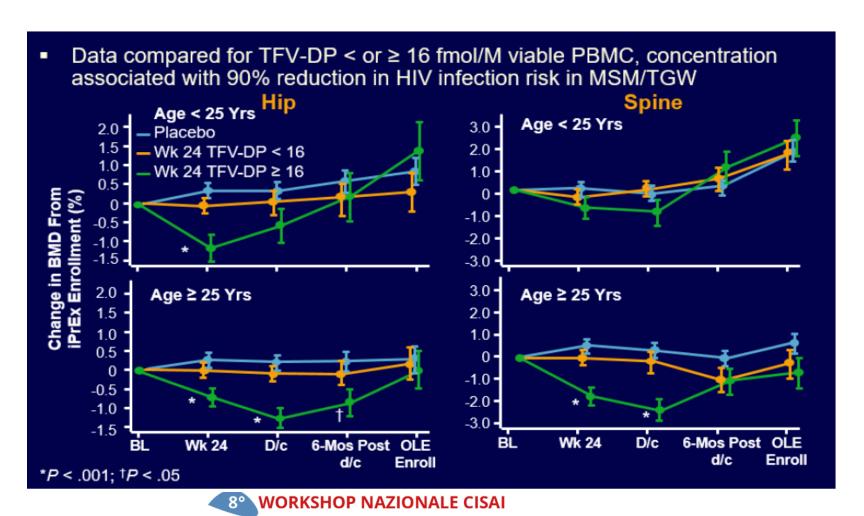

WORKSHOP NAZIONALE CISAL

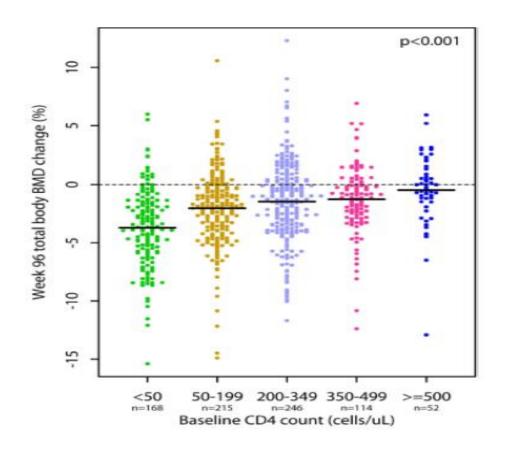
Prevenzione e gestione delle co-morbidità associate all'infezione da HIV

When we start ARV therapy patients lose bone


Some drugs more than others

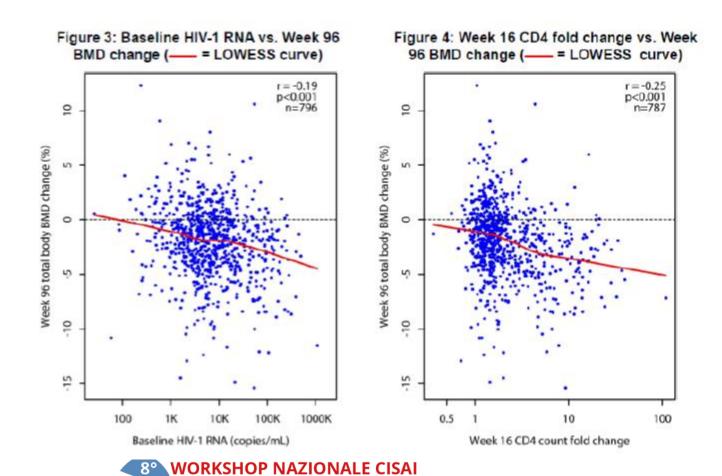
ACTG 5257


Starting ARVs induces a state of rapid bone turnover


Tenofovir does something to bones independently of HIV (and looks reversible)

Some people lose more bone than others

Patients with lower CD4 lose more bone



Week 96 BMD change by baseline CD4 category

Some people lose more bone than others

Patients with higher VL and with more improvement in CD4 lose more bone

Some people lose more bone than others

Table 1. Patients characteristics clustered according to the development or not of bone diseases.

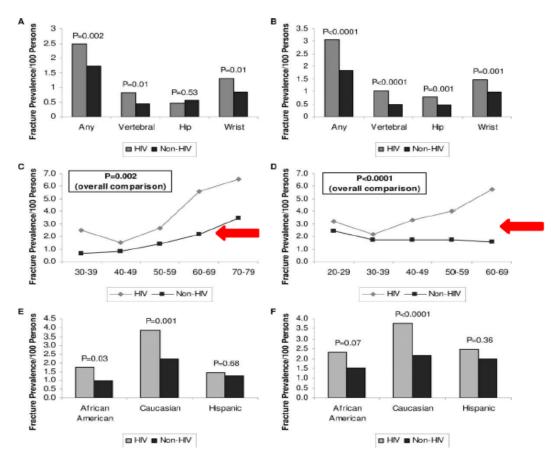
Parameters	No bone diseases (n = 48)	Osteopenia or osteoporosis (n=150)	P value	
TDF therapy (days)	1683 ± 1417	2209±1109	< 0.01	
TDF concentrations (ng/ml)	142 ± 136	157 ± 139	0.51	
Female sex (%)	47.9%	43.3%	0.33	
Age (years)	46 ± 10	51 ±8	< 0.01	
Concomitant ARV drugs (%)	50% protease inhibitor 33% NNRTI 17% other	55% protease inhibitor 35% NNRTI 10% other	0.74	
BMI (kg/m ²)	23.8 ± 4.6	22.2 ± 3.9	< 0.05	
Serum creatinine before TDF (mg/dl)	0.80 ± 0.19	0.78 ± 0.19	0.65	
Serum creatinine last f.u. (mg/dl)	1.0 ± 0.3	0.9 ± 0.3	0.16	
CD4 (cells/µl)	585 ± 252	654 ± 286	0.15	
HBV or HCV coinfection (%)	38%	43%	0.51	

Significantly higher TDF concentrations were found in patients with altered *vs* normal osteocalcin levels (TDF concentrations: 288±173 vs. 153±115 ng/ml, P<0.01)

Involvement of TDF only in the process of bone formation

Prevenzione e gestione delle co-morbidità associate all'infezione da HIV

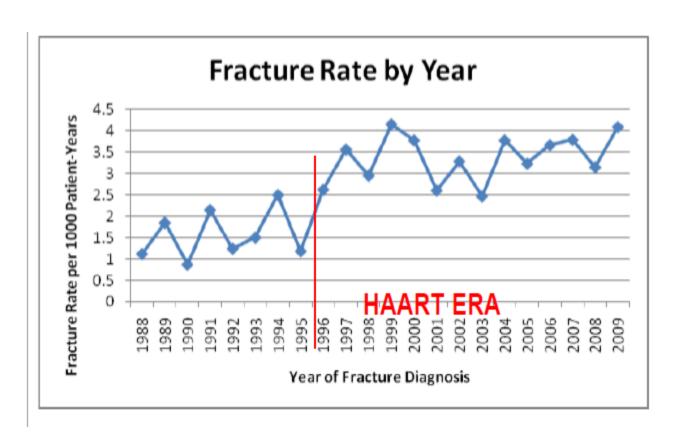
Risk factors for osteoporosis or fracture


- Advanced age; female sex
- Estrogen deficiency
- Hx fracture as adult
- Hx fragility fracture in 1° relative
- Current cigarette smoking
- Alcoholism
- Low body weight (<127 lbs)
- White race or Asian race
- Low calcium intake
- Low physical activity

- Poor health/frailty; falls
- Poor eyesight (despite correction)
- Dementia; cognitive impairment
- Impaired neuromuscular fxn
- Residence in nursing home
- Hx glucocorticoids >3 mos
- Long-term heparin therapy
- Anticonvulsant therapy
- Aromatase-inhibitor therapy
- Androgen-deprivation therapy

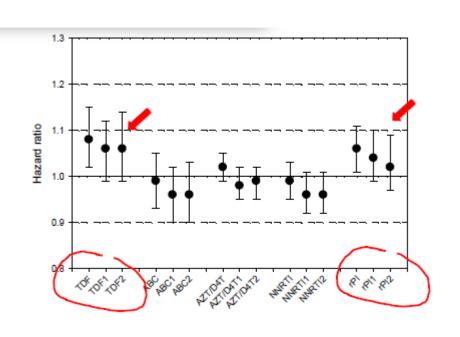
This problem is clinically relevant

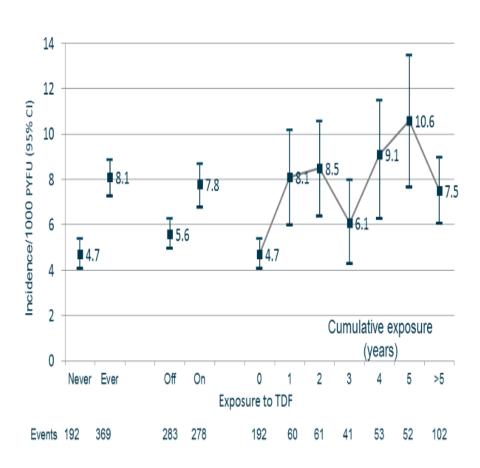
Patients with HIV have more fractures than non HIV



Prevenzione e gestione delle co-morbidità associate all'infezione da HIV

The rate of fractures has increased in the HAART era


VA cohort Study



Tenofovir is associated with an increased the risk of fracture

VA cohort Study

EuroSIDA cohort

WORKSHOP NAZIONALE CISAL

Prevenzione e gestione delle co-morbidità associate all'infezione da HIV

Outline

What do we know?

What have we learned lately?

The pathogenic mechanism is probably immune reconstitution (plus bone toxicity of tenofovir)

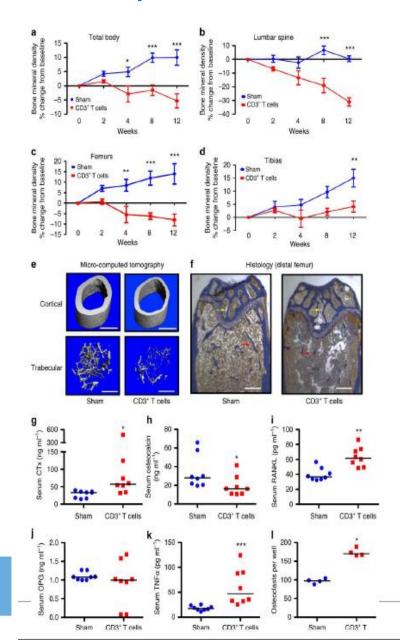
What they did:

 transplant T cells into immunocompromised mice to mimic ART-induced T-cell expansion

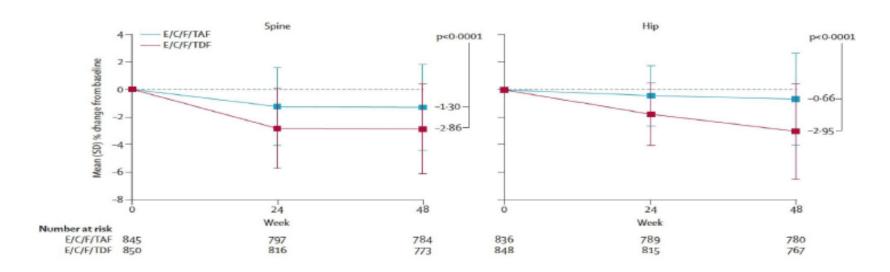
What they saw:

 Bone loss associated with the reconstitution

AIDS, 2016 Jan 28;30(3):405-14. doi: 10.1097/QAD.0000000000000918


Antiretroviral therapy induces a rapid increase in bone resorption that is positively associated with the magnitude of immune reconstitution in HIV infection.

Ofotokun I¹, Titanji K, Vunnava A, Roser-Page S, Vikulina T, Villinger F, Rogers K, Sheth AN, Lahiri CD, Lennox JL, Weitzmann MN.



WORKSHOP NAZIONALE CISAL

Prevenzione e gestione delle co-morbidità associate all'infezione da HIV

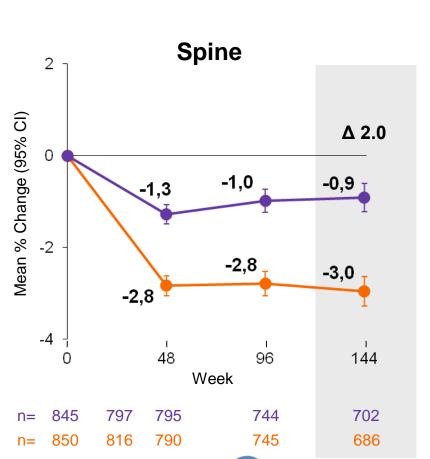
TAF is more bone friendly than TDF (naïve) (GS-104-111)

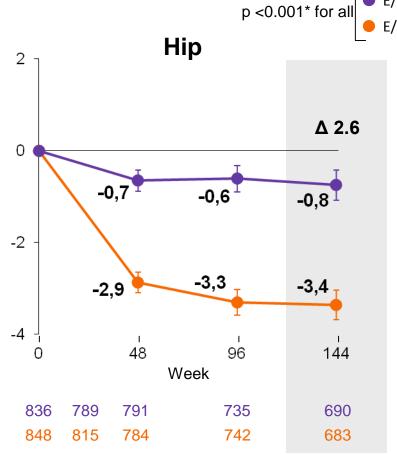
BMD decline > 5 %

E/C/F/TAF: 10% spine; 7% hip E/C/F/TDF: 22% spine; 19% hip

Fractures

E/C/F/TAF: 7 (0.8%) E/C/F/TDF: 12 (1.4%)

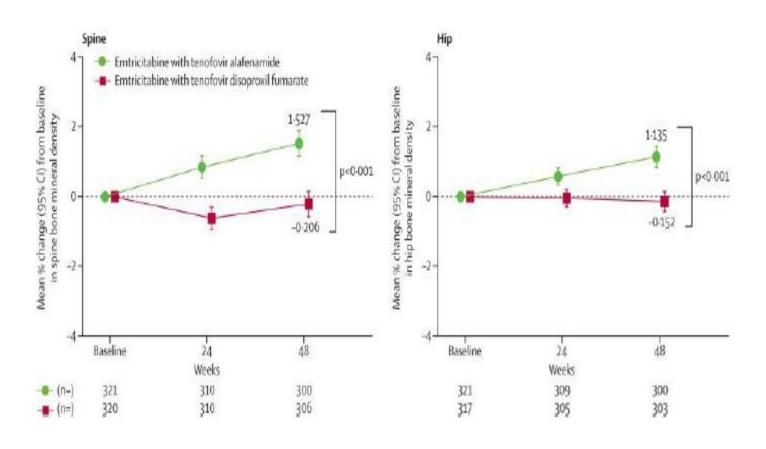




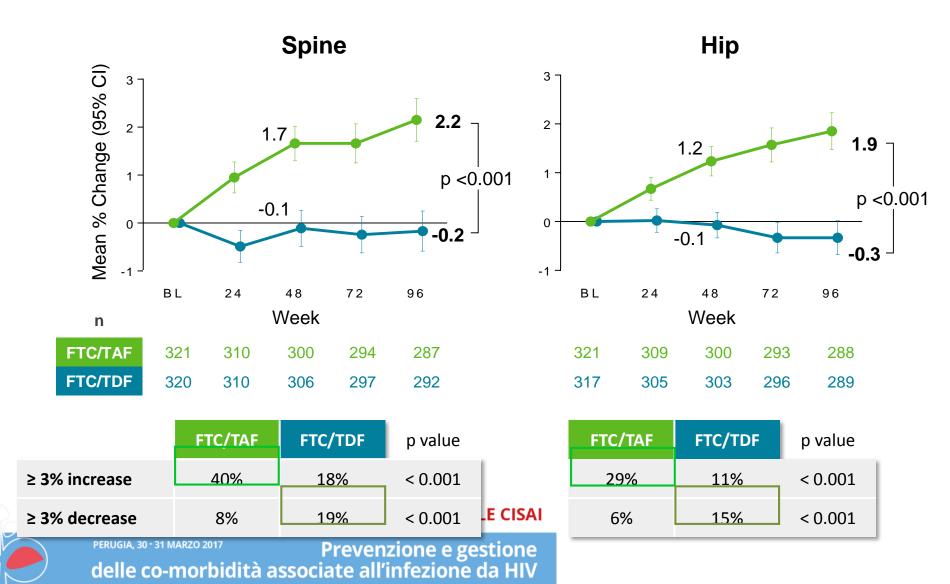
PERUGIA, 30 - 31 MARZO 2017 Prevenzione e gestione delle co-morbidità associate all'infezione da HIV

#

TAF is more bone friendly than TDF (naïve) (GS-104-111)



WORKSHOP NAZIONALE CISAI



TAF is more bone friendly than TDF (switch) (GS-1089)

TAF is more bone friendly than TDF (switch) (GS-1089)

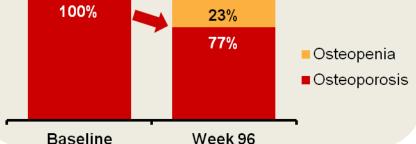
TAF is more bone friendly than TDF (switch in low BMD)

(GS-112-109 pooled analysis)

Analysis of outcomes and predictors of clinically significant BMD increases (≥5%) at W96 in the 214 subjects with low baseline BMD (T-score ≤ -2.0) in pooled TAF studies (E/C/F/TAF Studies 109 and 112)

Baseline T-score ≤ -2.0

Significant BMD increases observed


Spine: +2.53% (p<0.001)
 Hip: +2.39% (p<0.001)

 Proportion of low BMD participants experiencing ≥5% BMD increase

Spine: 27% (52/193)Hip: 16% (32/195)

Baseline T-score ≤ -2.5

- 86 subjects with low baseline BMD also had osteoporosis*
 - 23% of these subjects improved to osteopenia by Week 96



- Factors predicting ≥5% BMD increase after a switch from TDF to TAF:
 - Urinary phosphate wasting (FEPO₄ ≥ 10%) or
 - High bone turnover (P1NP levels >1.72 log₁₀ ng/mL)

How clinically important is this %?

Cost implications

INVITED ARTICLE

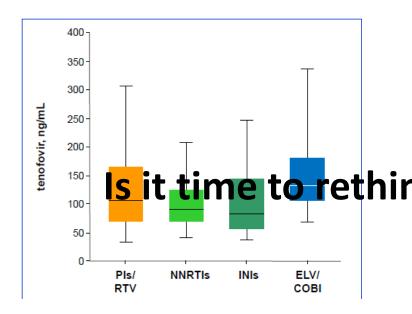
HIV/AIDS: Kenneth H. Mayer, Section Editor

The Epi-TAF for Tenofovir Disoproxil Fumarate?

Rochelle P. Walensky, 1234 Tim H. Horn, 5 and A. David Paltiel⁶

Medical Practice Evaluation Center, ²Division of Infectious Disease, and ³Division of General Internal Medicine, Massachusetts General Hospital, and ⁴Harvard University Center for AIDS Research, Harvard Medical School, Boston, Massachusetts: ⁵Treatment Action Group, New York, New York, and ⁶Yale School of Public Health, New Haven, Connecticut

- Using cost-effectiveness methods, we find that current conditions warrant an annual premium of up to \$1000 over the average wholesale price (AWP) of TDF.
- Once generic coformulations of tenofovir/lamivudine become accessible, however, the appropriate premium for TAF will likely merit a downward adjustment


Effect of cobicistat on tenofovir plasma concentrations: a cross-sectional study

Cristina Gervasoni¹, Davide Minisci¹, Sara Baidelli², Cristina Mazzali³, Andrea Giacomelli¹, Laura Milazzo¹, Paola Meraviglia¹, Emilio Clementi², Massimo Galli¹, Dario Cattaneo¹

Department of Infectious Diseases and ²Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy:

**Department of Management, Economics and Industrial Engineering (DIG), Politicnico di Milano

	Univariate analysis			Multivariate analysis		
	beta	SD	p-value	beta	SD	p-value
Concomitant ART			<.001			<.001
- COBICISTAT vs PI	0.21	0.08	0.011	0.29	0.08	0.001
- INI vs PI	-0.18	0.10	0.064	-0.20	0.10	0.046
- NNRTI vs PI	-0.17	0.06	0.007	-0.12	0.06	0.056
Gender (F vs M)	0.14	0.06	0.026	0.20	0.08	0.011
Co-infections (NO vs YES)	0.08	0.06	0.187	0.08	0.06	0.153
CD4 cell count	ria		0.888			
-[1-250] v [25] - [10]	0.01 G	100	0.628			
- [250-500] vs [>500]	0.004	0.06	0.950			
Viral load (>=37 vs <37)	-0.004	0.08	0.996			
Days of TDF therapy			0.669			
- <=1yr vs >6yrs	-0.04	0.08	0.599			
- (1yr-3yrs] vs >6yrs	0.06	0.08	0.457			
- (3yr-6yrs] vs >6yrs	-0.03	0.08	0.718			
Patients' age	0.01	0.002	0.002	0.01	0.003	0.001
Body weight	-0.006	0.002	0.002	-0.01	0.002	0.014
Serum creatinine	0.53	0.10	<.001	0.57	0.11	<.001

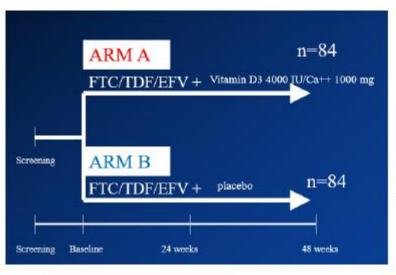
SD: standard deviation; ART: antiretroviral therapy; PI: protease inhibitors; INI: integrase inhibitors (excluding elvitegravir [ELV]); NNRTI: non nucleoside reverse transcriptase inhibitors

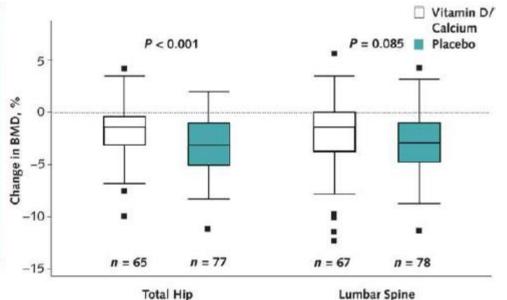
WORKSHOP NAZIONALE CISAL

Should we start/switch everybody to TAF?

- Yes
- No
- Not yet

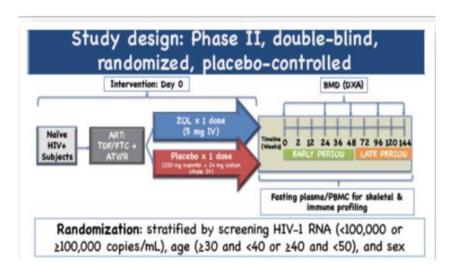
Bone loss can be partially prevented with vitamin D and Ca⁺⁺

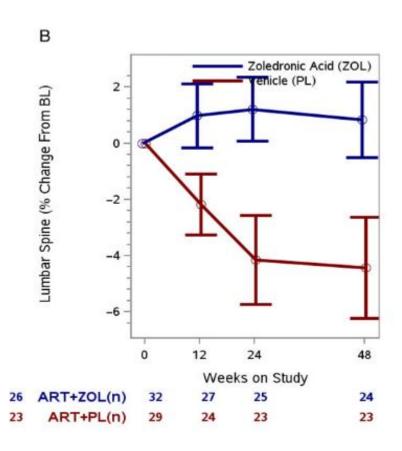

Annals of Internal Medicine


ORIGINAL RESEARCH

Vitamin D and Calcium Attenuate Bone Loss With Antiretroviral Therapy Initiation

A Randomized Trial


Edgar Turner Overton, MD; Ellen S. Chan, MSc; Todd T. Brown, MD, PhD; Pablo Tebas, MD; Grace A. McComsey, MD; Kathleen M. Melbourne, PharmD; Andrew Napoli, PhD; William Royce Hardin, BS; Heather J. Ribaudo, PhD; and Michael T. Yin, MD, MS



Prevenzione e gestione delle co-morbidità associate all'infezione da HIV

Bone loss can be prevented with a single dose of zoledronic acid

8° WORKSHOP NAZIONALE CISAI

PERUGIA, 30 - 31 MARZO 2017 Prevenzione e gestione delle co-morbidità associate all'infezione da HIV

Should we do any of those?

- Yes
- No
- Not yet

Recommendations for Evaluation and Management of Bone Disease in HIV

Todd T. Brown,¹ Jennifer Hoy,² Marco Borderi,³ Giovanni Guaraldi,⁴ Boris Renjifo,⁵ Fabio Vescini,⁶ Michael T. Yin,⁷ and William G. Powderly⁸

¹Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, Maryland; ²Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; ³Infectious Diseases Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, and ⁴Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy; ⁵Global Medical Affairs Virology, Global Pharmaceutical Research and Development, AbbVie, North Chicago, Illinois; ⁶Endocrinology and Metabolism Unit, University Hospital "Santa Maria della Misericordia," Udine, Italy; ⁷Department of Medicine, Columbia University Medical Center, New York, New York; and ⁸Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri

Thirty-four human immunodeficiency virus (HIV) specialists from 16 countries contributed to this project, whose primary aim was to provide guidance on the screening, diagnosis, and monitoring of bone disease in HIV-infected patients. Four clinically important questions in bone disease management were identified, and recommendations, based on literature review and expert opinion, were agreed upon. Risk of fragility fracture should be assessed primarily using the Fracture Risk Assessment Tool (FRAX), without dual-energy X-ray absorptiometry (DXA), in all HIV-infected men aged 40−49 years and HIV-infected premenopausal women aged ≥40 years. DXA should be performed in men aged ≥50 years, postmenopausal women, patients with a history of fragility fracture, patients receiving chronic glucocorticoid treatment, and patients at high risk of falls. In resource-limited settings, FRAX without bone mineral density can be substituted for DXA. Guidelines for antiretroviral therapy should be followed; adjustment should avoid tenofovir disoproxil fumarate or boosted protease inhibitors in at-risk patients. Dietary and lifestyle management strategies for high-risk patients should be employed and antiosteoporosis treatment initiated.

Keywords. bone disease; fragility fracture; human immunodeficiency virus; osteoporosis.

8° WORKSHOP NAZIONALE CISAI

PERUGIA, 30-31 MARZO 2017 Prevenzione e gestione delle co-morbidità associate all'infezione da HIV